A Disaster Doesn't Have to Be a Disaster

You just arrived at a multiple-casualty incident, and there are victims lying everywhere. Whom do you send first?


You just arrived at a multiple-casualty incident, and there are victims lying everywhere. Whom do you send first? If you take the patient who seems to be in the worst condition, will he even make it to the hospital? Maybe you should put him on a helicopter, but you'll waste a valuable resource if he doesn't make it to the hospital alive. How will that affect the survival chances of all the others? If you don't send the worst first, he will surely die from your decision. But if you do, even if he can be saved, how many medical resources will it take, and what happens to the patients left untreated? How many will get worse before they are transported and treated? What is the best order among all of these immediates? You know from experience some of these delayeds will get worse; some will even crash. Do you send some of those? What if you put someone on the helicopter, the trauma team is ready and waiting, and that patient really did not need it? How can you possibly make all the right decisions and make the best use of helicopters, ambulances, trauma centers and other hospitals? How can you save as many of these patients as possible?

Triage is a complex issue, as it involves using all of your resources effectively to save as many lives as possible. Currently, the only support for making life-and-death decisions are "red" and "yellow" triage tags. Given medical advances, this seems archaic. It does not provide the help that is needed, leads to inconsistent and inaccurate triaging and may result in unnecessary deaths.1 Color-tagging methods are subjective. They are not based on empirical data, they are not scalable, and their goal of "doing the greatest good for the greatest number" is not measurable or reproducible. All of the unanswerable questions posed in the above scenario are a product of an imprecise and ineffective triage system.

A new triage method may be the solution to these problems. The patent-pending Sacco Triage Method (STM) is an evidence-based, outcome-driven triage method.2 It is simple and precise, scalable and reproducible, and it will significantly increase survivorship in mass- or multiple-casualty incidents. It also supports routine patient tracking and outcome evaluation. Using a simple physiological score that predicts survival and deterioration--a score that is used every day on every trauma patient--patients are triaged to maximize expected survivors in consideration of the timing and availability of transport and treatment resources.

Trauma Patient Scoring

Sacco et. al. showed that a scene score based on respiratory rate (R), pulse rate (P) and best motor response (M) could accurately predict a patient's survivability for blunt and penetrating trauma.2 The Sacco Score is computed by summing coded values of each measure. For example, if a patient has an accelerated respiratory rate of 40 breaths per minute, a pulse of 130 beats per minute, and can raise his arm when asked, his Sacco Score would be 9 (i.e., 2+3+4). This patient would be red-tagged under the widely used START (Simple Triage and Rapid Treatment) method simply due to his rapid respiratory rate, even though the survival probability for a patient with a score of 9 is 90%.2 We generically call the score used to assess trauma victims the Sacco Score, allowing for adjustments beyond RPM that might include age, insult and injury.

As you can see in Table I, Sacco Scores can range from 0 (zeroes in each measure) to 12 (fours in each measure). The corresponding survival probabilities are not shown here, as they are not explicitly used in the field, but the underlying research is used to drive triage decisions.2

This content continues onto the next page...