Prehospital Use of CPAP

It’s 3 a.m. on an unusually slow night. Your partner is dozing on the couch, and you’re watching your fifth consecutive Cops rerun when the hotline rings.

It’s 3 a.m. on an unusually slow night. Your partner is dozing on the couch, and you’re watching your fifth consecutive Cops rerun when the hotline rings. “Rise and shine,” says the dispatcher. “Difficulty breathing, cardiac history, 84-year-old female at St. Anthony’s Towers, apartment 906.”

You know you’ve been to this apartment before and cared for a patient with congestive heart failure. On the way, you discuss with your partner how you’re surprised she survived her last trip to the hospital when she was intubated in the emergency department. You’re both prepared for a priority patient.

An excited neighbor in a nightgown meets you at the elevator and guides you to the apartment. You hear the familiar gurgling sounds of rales from the hallway, and inside find Mrs. Miller seated upright on her bed. She is pale, diaphoretic and struggling for every breath. “I....need...the...mask...!” she tells you between gasps. A quick assessment reveals that she woke up short of breath, just as she has before when her “lungs filled up.” She denies chest pain and has a long list of medications that includes nitroglycerin and furosemide.

Your partner immediately places her on a NRB mask and obtains a set of vitals, while you assemble a continuous positive airway pressure (CPAP) circuit. Her heart rate is 140, sinus tachycardia on the monitor, pulse ox 82%, respiratory rate 36 with coarse rales in all lung fields, and BP 210/150. You connect the CPAP tubing to your portable oxygen tank, administer a spray of nitroglycerin under her tongue, and place the tight-fitting mask on her face, while your partner obtains IV access. A few minutes after the mask is applied, she becomes less anxious and nods her head when you ask if it is easier to breathe. You apply an inch of nitroglycerin paste to her chest, administer 40 mg of furosemide IV and package her onto the stretcher. You reassess her vitals en route to the hospital; she now has a heart rate of 128, pulse ox 100%, respiratory rate 24, BP 178/94, and you obtain a 12-lead ECG that shows 1 mm of ST depression in leads I, aVL, V5 and V6. You administer another spray of nitroglycerin and call the hospital to advise that your patient is on CPAP. They give you a room assignment and assure that a respiratory therapist will be standing by.

At the hospital, Mrs. Miller is transferred to a BiPAP machine, given more furosemide and started on a nitroglycerin infusion. Her skin color is almost back to normal now, and she is not nearly as diaphoretic. As you say goodbye to her, she thanks you several times, now able to speak much easier.


Because respiratory distress is one of the most common causes for calling 9-1-1, EMS providers have several tools to treat and improve discomfort before arriving at the hospital. Once a differential diagnosis can be made for the cause of the breathing difficulty, high-flow oxygen and appropriate medications usually help alleviate it. However, some patients are in such profound distress that their breathing must be assisted with a bag-valve mask, followed by intubation. While often necessary for survival, endotracheal intubation is an invasive procedure that carries a host of drawbacks and complications. Noninvasive ventilatory support is emerging in the prehospital setting as an effective treatment option for patients who need some support for breathing but can still maintain an airway. In cases of acute pulmonary edema from congestive heart failure, COPD and asthma exacerbations, it has been shown to decrease the need for endotracheal intubation and relieve symptoms.1–6 Noninvasive ventilatory support is delivered by continuous positive airway pressure (CPAP) and bilevel positive airway pressure (BiPAP) devices. This article explains the physiologic advantages to noninvasive ventilatory support, the equipment it involves and how it is applied, and reviews some of the current research on its use.

Airway Management Options

This content continues onto the next page...