Understand the Trauma Triad of Death

Know its components to help protect patients.


An EMS crew responds to a report of a fall from a roof. Upon arrival they find an elderly male patient lying on his right side. He is unconscious, with sonorous respirations. His skin is cool, moist and pale. Bystanders say he was cleaning his gutters when he appeared to slip and fall off the roof. He fell approximately 25 feet onto a hard surface and has not been responsive or moved since the fall.

The crew initiates cervical-spinal immobilization as they rapidly assess the patient and address his ABCs. The man appears to have a significant head injury as well as right chest wall injuries. Bystanders report he has a history of diabetes, congestive heart failure and high blood pressure, and is also a smoker. He has been noncompliant with his medications.

The crew continues to treat the patient while simultaneously preparing for transport to the local trauma center. They load him into the ambulance and start intravenous lines. The patient remains unconscious. En route to the hospital, his vital signs are heart rate 120, EKG showing sinus tachycardia; blood pressure 70/30; respiratory rate 10 and still sonorous.

At the hospital the patient is transferred to emergency department and admitted to the CCU in critical condition. Two weeks later he expires. It is noted that the patient experienced hypoxia, acidosis, hypothermia and disseminated intravascular coagulation (DIC). The emergency physician provides this follow-up to the crew and observes that the patient appears to have experienced the trauma triad of death.

Overview

Prehospital care providers respond to a variety of calls, ranging from relatively benign to life-threatening. Providers need to maintain a core working knowledge of anatomy and physiology, as well as confidence with the assessment and treatment of all patients, regardless of situation. This is especially important in situations where multiple diseases or injuries may be involved, such as the case of the multiple-trauma patient.

Trauma scenarios require providers to consider the immediate needs of the patient while simultaneously anticipating what treatment they may require in the future. A variety of tools and resources can be used to support the provider in providing optimal care. The Golden Hour suggests the critical trauma patient has 60 minutes from the time of injury to reach definitive care. This concept has influenced approaches to trauma resuscitation, such as the goal of reducing the time from injury to incision,1–4 and in recent years the idea has been applied to settings beyond the field, including the emergency department, operating room and ICU.

In the ED and OR environments, the critical parameter is the time the patient spends there before certain clinical conditions develop. These conditions include hypothermia, acidosis and coagulopathy. Jointly they comprise the trauma triad of death (see Figure 1). While the prehospital treatment of hypothermia, acidosis and coagulopathy is predominantly supportive, it is important for prehospital providers to be familiar with the individual components of this condition; care given in the prehospital setting can help reduce the likelihood a patient succumbs to the trauma triad of death.5–9

Hypothermia

Hypothermia occurs when the body’s mechanisms for temperature regulation are overwhelmed. The brain’s hypothalamus produces hormones that influence a variety of bodily functions, including body temperature. Core body temperature normally ranges between 36.5–37.5°C (see Table 1). Hypothalamic control of temperature occurs through several mechanisms, including heat conservation with peripheral vasoconstriction and heat production through shivering, influenced by epinephrine (Figure 2). Heat production increases with muscle contractions and shivering. Some consider shivering one of the last resorts by which the body attempts to maintain temperature.1–7,10–14

This content continues onto the next page...