Why We Need to Rethink C-Spine Immobilization

Why We Need to Rethink C-Spine Immobilization

The spinal immobilization of trauma patients suspected of having spinal injury has been a cornerstone of prehospital care for decades. Current practices are based on the belief that a patient with an injured spinal column can deteriorate neurologically without immobilization. This concern has ballooned to include large numbers of patients with little or no chance of such an injury and caregivers with little appreciation for the complications caused by use of the cervical collar and spinal board. Somewhere between 1 million and 5 million patients receive spinal immobilization each year in the United States.1,2

The injury of concern is not the cervical spine fracture but the unstable cervical fracture with the potential for further neurological deficits.3 It is clear that among severely traumatized patients admitted to hospitals, the rate of cervical spine fractures is 2%–5% and the rate of unstable cervical fractures is 1%–2%.4–6 For patients with head injuries, the rate of cervical spine injuries increases substantially.7 Among patients with known unstable cervical spine fractures, half in one study demonstrated neurological deficits upon hospital arrival.8 Most clinicians would agree that this high-risk group would benefit from spinal immobilization, and we are truly concerned about that 0.5%–1% with unstable cervical spine fractures and intact spinal cords.

It is logical that among patients with lesser mechanisms of injury, the potential for unstable cervical spine fractures is much smaller. It is with this group that we must consider the trade-offs with the complications of cervical spine immobilization. Several studies have examined the rate of cervical fracture among generic blunt-trauma patients, whose mechanisms included MVCs, falls from standing, falls from heights and assaults. In these commonly encountered patients, the rate of cervical fracture is 1.2%–3.3%,1,9–12 and the rate of cervical spinal cord injury is 0.4%–0.7%.13,14

One of the larger studies of blunt-trauma patients with high-energy mechanisms had clear inclusion criteria and used a well-defined endpoint of clinically important cervical spine injury (essentially an unstable cervical spine fracture). In this Canadian system, patients with blunt assaults and falls from standing are generally not assessed for cervical spine injury. Among this cohort of patients with high-energy mechanisms, the rate of clinically important cervical spine injury was 0.6%.1,15 This study outlined a clear method (the Canadian C-Spine Rule) for evaluating patients with normal GCS and determining by exam those who do not have clinically important cervical spine injuries. This method has been validated in the field.15 Other criteria have also been well studied to safely discriminate a subgroup without risk of cervical spine fracture.10 Many EMS systems have incorporated these methods of clinical clearance.

Trauma expert Peter Rhee, MD, and colleagues did a retrospective study of 4,390 blunt-assault patients and noted a cervical spine fracture rate of 0.4% and cervical spinal cord injury rate of 0.14%.6 Only 4 (0.03%) of 51 patients with fractures were considered to be unstable. There has been no study that specifically examines patients who fall from standing.

The subgroup that has been most studied is those who have penetrating trauma. One recent study led by Johns Hopkins’ Elliot Haut, MD, examined the national trauma registry for such patients.16 The authors demonstrated a doubling of mortality (OR 2.06) among patients who received cervical spine immobilization. It is unclear whether this implies causality or is a proxy for more severe injury. From more than 30,000 patients with penetrating trauma, 443 (1.43%) had spine fractures, and 116 (0.38%) had unstable spine fractures. Of those with unstable spine fractures, 86 (74%) had completed spinal injuries prior to immobilization. The authors concluded that in order to potentially benefit one person with spinal immobilization, 1,032 people would have to be immobilized. But in order potentially harm/contribute to one death, just 66 would have to be.

Many other case-control studies have also examined this issue.6,17–22 A recent systematic review of the literature pointed out the low rate of unstable fractures and the relatively rare appearance of patients with unstable spine fractures and no neurologic deficits.23 The authors, led by LSU’s Lance Stuke, MD, concluded there is no data to support routine spine immobilization in patients with penetrating injury to the neck, head or torso. They recommended the use of spinal immobilization only in the setting of obvious focal neurologic deficits. Following this logic, we could reach the same conclusion for patients who have suffered blunt assault and less-than-high-energy blunt trauma.


There are clearly clinical complications with cervical spinal immobilization as it is currently practiced. Pain is almost universal with the use of a hard board,24–26 as well as the radiation and expense of x-rays and CTs. One recent study concluded that exposure to ionizing radiation (mostly from iatrogenic causes) is the leading environmental factor associated with breast cancer.27 There are other potential problems with unclear clinical significance, such as mild respiratory compromise,28 increased intracranial pressure29,30 and the rare cases of distracting an unstable fracture.31

For such a commonly performed procedure, there has been a remarkable lack of progress in recent years on alternative methods of immobilization. The vacuum splint has some promise and should be further evaluated, especially for severely injured patients.32 It poses significant logistical issues to work out, such as decontamination and acceptance by trauma centers.

For patients with a much lower likelihood of cervical spinal cord injury, such as victims of blunt assaults and falls from standing or alcohol-intoxicated patients with minor scalp or facial injuries, we can consider other, much less restrictive methods of immobilization. These could range from using the hard collar without a board to using a soft roll with tape. We should be asking the inventive among us or our more creative prehospital supply companies to develop new and novel methods to accomplish less-restrictive immobilization. Alameda County is embarking on such a protocol. Those with severe trauma will be immobilized with a hard collar and backboard or a vacuum splint. Those with less-severe trauma will have spinal restriction with a hard collar alone or some other combination of soft restrictive devices.

Continue Reading

Hopefully we can move away from the forest of used hard boards in the ambulance bays of our community hospitals and at the same time develop a saner policy for our patients with lower-energy injuries.


1. Stiell IG, Wells GA, Vandemheen KL, et al. The Canadian C-Spine Rule for radiography in alert and stable trauma patients. JAMA 2001; 286: 1,841–8.
2. Orledge JD, Pepe PE. Out-of-hospital spinal immobilization: is it really necessary? Acad Emerg Med 1998; 5: 203–4.
3. Hauswald M. A re-conceptualisation of acute spinal care. Emerg Med J 2012 Sep 8 [epub ahead of print].
4. Grossman MD, Reilly PM, Gillett T, Gillett D. National survey of the incidence of cervical spine injury and approach to cervical spine clearance in U.S. trauma centers. J Trauma 1999; 47: 684–90.
5. Lowery DW, Wald MM, Browne BJ, et al. Epidemiology of cervical spine injury victims. Ann Emerg Med 2001; 38: 12–6.
6. Rhee P, Kuncir EJ, Johnson L, et al. Cervical spine injury is highly dependent on the mechanism of injury following blunt and penetrating assault. J Trauma 2006; 61: 1,166–70.
7. Morris CG, McCoy EP, Lavery GG. Spinal immobilisation for unconscious patients with multiple injuries. BMJ 2004; 329: 495–9.
8. Scannell G, Waxman K, Tominaga G, Barker S, Annas C. Orotracheal intubation in trauma patients with cervical fractures. Arch Surg 1993; 128: 903–5, discussion 5–6.
9. Meldon SW, Brant TA, Cydulka RK, Collins TE, Shade BR. Out-of-hospital cervical spine clearance: agreement between emergency medical technicians and emergency physicians. J Trauma 1998; 45: 1,058–61.
10. Hoffman JR, Mower WR, Wolfson AB, Todd KH, Zucker MI. Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. National Emergency X-Radiography Utilization Study Group. NEJM 2000; 343: 94–9.
11. Domeier RM, Swor RA, Evans RW, et al. Multicenter prospective validation of prehospital clinical spinal clearance criteria. J Trauma 2002; 53: 744–50.
12. Burton JH, Dunn MG, Harmon NR, Hermanson TA, Bradshaw JR. A statewide, prehospital emergency medical service selective patient spine immobilization protocol. J Trauma 2006; 61: 161–7.
13. Domeier RM, Frederiksen SM, Welch K. Prospective performance assessment of an out-of-hospital protocol for selective spine immobilization using clinical spine clearance criteria. Ann Emerg Med 2005; 46: 123–31.
14. Kwan I, Bunn F. Effects of prehospital spinal immobilization: a systematic review of randomized trials on healthy subjects. Preh Dis Med 2005; 20: 47–53.
15. Vaillancourt C, Stiell IG, Beaudoin T, et al. The out-of-hospital validation of the Canadian C-Spine Rule by paramedics. Ann Emerg Med 2009; 54: 663–71 e1.
16. Haut ER, Kalish BT, Efron DT, et al. Spine immobilization in penetrating trauma: more harm than good? J Trauma 2010; 68: 115–20, discussion 20–1.
17. Brown JB, Bankey PE, Sangosanya AT, Cheng JD, Stassen NA, Gestring ML. Prehospital spinal immobilization does not appear to be beneficial and may complicate care following gunshot injury to the torso. J Trauma 2009; 67: 774–8.
18. Connell RA, Graham CA, Munro PT. Is spinal immobilisation necessary for all patients sustaining isolated penetrating trauma? Injury 2003; 34: 912–4.
19. DuBose J, Teixeira PG, Hadjizacharia P, et al. The role of routine spinal imaging and immobilisation in asymptomatic patients after gunshot wounds. Injury 2009; 40: 860–3.
20. Kaups KL, Davis JW. Patients with gunshot wounds to the head do not require cervical spine immobilization and evaluation. J Trauma 1998; 44: 865–7.
21. Klein Y, Cohn SM, Soffer D, Lynn M, Shaw CM, Hasharoni A. Spine injuries are common among asymptomatic patients after gunshot wounds. J Trauma 2005; 58: 833–6.
22. Lanoix R, Gupta R, Leak L, Pierre J. C-spine injury associated with gunshot wounds to the head: retrospective study and literature review. J Trauma 2000; 49: 860–3.
23. Stuke LE, Pons PT, Guy JS, Chapleau WP, Butler FK, McSwain NE. Prehospital spine immobilization for penetrating trauma—review and recommendations from the Prehospital Trauma Life Support Executive Committee. J Trauma 2011; 71: 763–9, discussion 9–70.
24. Cordell WH, Hollingsworth JC, Olinger ML, Stroman SJ, Nelson DR. Pain and tissue-interface pressures during spine-board immobilization. Ann Emerg Med 1995; 26: 31–6.
25. Chan D, Goldberg R, Tascone A, Harmon S, Chan L. The effect of spinal immobilization on healthy volunteers. Ann Emerg Med 1994; 23: 48–51.
26. March JA, Ausband SC, Brown LH. Changes in physical examination caused by use of spinal immobilization. Preh Emerg Care 2002; 6: 421–4.
27. Smith-Bindman R. Environmental causes of breast cancer and radiation from medical imaging: findings from the Institute of Medicine report. Arch Internal Med 2012; 172: 1,023–7.
28. Totten VY, Sugarman DB. Respiratory effects of spinal immobilization. Preh Emerg Care 1999; 3: 347–52.
29. Davies G, Deakin C, Wilson A. The effect of a rigid collar on intracranial pressure. Injury 1996; 27: 647–9.
30. Kolb JC, Summers RL, Galli RL. Cervical collar-induced changes in intracranial pressure. Amer J Emerg Med 1999; 17: 135–7.
31. Ben-Galim P, Dreiangel N, Mattox KL, Reitman CA, Kalantar SB, Hipp JA. Extrication collars can result in abnormal separation between vertebrae in the presence of a dissociative injury. J Trauma 2010; 69: 447–50.
32. Luscombe MD, Williams JL. Comparison of a long spinal board and vacuum mattress for spinal immobilisation. Emerg Med J 2003; 20: 476–8.

Karl A. Sporer, MD, FACEP, FACP, is EMS medical director for Alameda County EMS in California. Reach him at karl.sporer@acgov.org.



Hikers found Angela Hernandez alive on the shore 7 days after plummeting 200 feet from a cliff.
TCAD paramedics responded to Table Rock Lake for a capsized watercraft that left 17 dead.
Rescue crews are still searching for victims after heavy gusts of wind caused a duck boat to flip over.
County Ambulance agreed to the settlement after submitting false claims to Medicare to pay an employee's salary and benefits.
Jamison Peevyhouse, ENP, the new president of NENA, urges emergency dispatch personnel to commit to the mission of improving the 9-1-1 community.
Tupelo Fire Department will use the grant to install advanced source capture exhaust systems to mitigate the adverse effects of diesel exhaust fumes.
A man and woman stole the truck while fire crews were battling a 12-acre fire in Sacramento.
Demetrius Nathaniel Pitts planned on sending remote-controlled toy cars to set off bombs in Cleveland during holiday celebrations.
Authorities report that the County Fire is burning through an average of 1,000 acres per hour.
From locating active shooters inside buildings to rescuing stranded hikers, agencies are taking full advantage of the operational benefits offered by drones.
One vehicle manufacturer's driver's assistance program includes an emergency services feature that has its own national medical director.
The NYPD’s Emergency Service Unit is prepared for just about anything.
Loved ones need answers after MCIs, and we’re often positioned to help provide them.
A broader offering means there is a high-output LED light bar for virtually every vehicle, every application and every budget.
As many as 2,500 northern California residents have fled their homes to escape the 0% contained Pawnee Fire.